In $$\triangle ABC, \angle A = 52^\circ$$ and O is the orthocenter of the triangle (BO and CO meet AC and AB at E and F respectively when produced). If the bisectors of $$\angle OBC$$ and $$\angle OCB$$ meetat P, then the measure of $$\angle BPC$$ is:
By the orthogonal property,
$$\angle BOC = 180 - \angle A$$
$$\angle OBC +Â $$\angle OCB =Â \angle A$$
$$\angle BPC = 180 - \angle A/2
$$\angle BPC =Â 180 - \angle 52/2 = 180 - 26 = 154 \degree$$
Create a FREE account and get: