ΔPQR is right angled at Q. If $$tan P = \frac{24}{7}$$, then what is the value of cos R ?
Given : $$\tan P$$ = $$\frac{24}{7}$$
Also, $$\tan P=\frac{QR}{PQ}=\frac{24}{7}$$
Let QR = 24 cm and PQ = 7 cm
Thus, in $$\triangle$$ PQR, => $$(PR)^2=(PQ)^2+(QR)^2$$
=> $$(PR)^2=(7)^2+(24)^2$$
=> $$(PR)^2=49+576=625$$
=> $$PR=\sqrt{625}=25$$ cm
To find : $$\cos R=\frac{QR}{PR}$$
= $$\frac{24}{25}$$
=> Ans - (B)
Create a FREE account and get: