Question 20

Out of the given responses, one of the factors of $$(a^{2}-b^{2})^3+(b^{2}-c^{2})^3+(c^{2}-a^{2})^{3}$$is

Solution

Let, X = $$a^{2} - b^{2}$$, Y = $$b^{2} - c^{2}$$, Z = $$c^{2} - a^{2}$$

Then, X + Y + Z = 0 (i.e $$a^{2} - b^{2}$$ + $$b^{2} - c^{2}$$ + $$c^{2} - a^{2}$$ = 0)

We know that, 

X$$^{3}$$ + Y$$^{3}$$ + Z$$^{3}$$ = 3XYZ i.e,

$$(a^{2}-b^{2})^3+(b^{2}-c^{2})^3+(c^{2}-a^{2})^{3}$$ = 3 ($$a^{2} - b^{2}) (b^{2} - c^{2}) (c^{2} - a^{2}$$)

One of the factors is,

$$a^{2} - b^{2} (or) (a + b)(a - b)$$

Hence, option A is the correct answer.


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App