Out of the given responses, one of the factors of $$(a^{2}-b^{2})^3+(b^{2}-c^{2})^3+(c^{2}-a^{2})^{3}$$is
Let, X = $$a^{2} - b^{2}$$, Y = $$b^{2} - c^{2}$$, Z = $$c^{2} - a^{2}$$
Then, X + Y + Z = 0 (i.e $$a^{2} - b^{2}$$ +Â $$b^{2} - c^{2}$$ +Â $$c^{2} - a^{2}$$ = 0)
We know that,Â
X$$^{3}$$ + Y$$^{3}$$ + Z$$^{3}$$ = 3XYZ i.e,
$$(a^{2}-b^{2})^3+(b^{2}-c^{2})^3+(c^{2}-a^{2})^{3}$$ = 3 ($$a^{2} - b^{2}) (b^{2} - c^{2}) (c^{2} - a^{2}$$)
One of the factors is,
$$a^{2} - b^{2} (or) (a + b)(a - b)$$
Hence, option A is the correct answer.
Create a FREE account and get: