Given 2x+$$\frac{1}{x} =$$ 3
2(x+$$\frac{1}{x}) =$$ 3
$$\Rightarrow$$ x+$$\frac{1}{x} = \frac{3}{2}$$
Cubing on both sides
(x+$$\frac{1}{x})^{3} = \frac{27}{8}$$
x$$^{3}$$+$$\frac{1}{x^{3}}$$+3$$\times$$x$$\times$$ $$\frac{1}{x}$$(x+$$\frac{1}{x}$$) $$= \frac{27}{8}$$
$$\Rightarrow x^{3}+\frac{1}{x^{3}}+3(\frac{3}{2}) = \frac{27}{8}$$
$$\Rightarrow x^{3}+\frac{1}{x^{3}} = \frac{27}{8}-\frac{9}{2} = \frac{-9}{8}$$
$$x^{3}+\frac{1}{x^{3}}+2 = \frac{-9}{8}+2 = \frac{7}{8}$$
Create a FREE account and get: