$$\frac{x^{24}+1}{x^{12}}$$ = 7
We need to find, $$\frac{x^{72}+1}{x^{36}}$$ = $$x^{36} + \frac{1}{x^{36}}$$
=> $$x^{12} + \frac{1}{x^{12}}$$ = 7
Cubing both sides, and using the formula $$(a+b)^{3}$$ = $$a^{3}+b^{3}$$+ 3ab(a+b) , we get :
=> $$x^{36} + \frac{1}{x^{36}} + 3*1*(x^{12}+\frac{1}{x^{12}})$$ = 343
=> $$x^{36} + \frac{1}{x^{36}}$$ + 21 = 343
=> $$x^{36} + \frac{1}{x^{36}}$$ = 343-21 = 322
Create a FREE account and get: