Expression : $$2sin^{2}$$ θ + $$3cos^{2}$$ θ
We know that, $$sin^2 \theta = 1 - cos^2 \theta$$
=> $$2 (1- cos^2 \theta) + 3cos^2 \theta$$
= $$cos^2 \theta + 2$$
Using the formula, $$cos^2 \theta = \frac{cos 2\theta + 1}{2}$$
=> $$\frac{cos 2\theta + 1}{2} + 2$$
= $$\frac{cos 2\theta}{2} + \frac{5}{2}$$
$$\because$$ minimum value of $$cos 2\theta = -1$$
=> min value = $$\frac{5}{2} - \frac{1}{2} = 2$$
Create a FREE account and get: