If $$\frac{x+1}{x-1}=\frac{a}{b}$$ and $$\frac{1-y}{1+y}=\frac{b}{a}$$, then the value of $$\frac{x-y}{1+xy}$$ is:
Given : $$\frac{x+1}{x-1}=\frac{a}{b}$$
=> $$b(x+1)=a(x-1)$$
=> $$bx+b=ax-a$$
=> $$x(a-b)=a+b$$
=> $$x=\frac{a+b}{a-b}$$
Similarly, $$y=\frac{a-b}{a+b}$$
To find : $$\frac{x-y}{1+xy}$$
= $$[(\frac{a+b}{a-b})-(\frac{a-b}{a+b})]\div[1+(\frac{a+b}{a-b})(\frac{a-b}{a+b})]$$
= $$(\frac{(a+b)^2-(a-b)^2}{(a+b)(a-b)})\div(1+1)$$
= $$(\frac{(a^2+b^2+2ab)-(a^2+b^2-2ab)}{a^2-b^2})\times(\frac{1}{2})$$
= $$\frac{4ab}{2(a^2-b^2)}$$
= $$\frac{2ab}{a^2-b^2}$$
=> Ans - (C)
Create a FREE account and get: