What will be the value of $$\ x^{3} \ + y^{3}+ \ z^{3}$$- 3xyz when x + y + z = 9 and $$\ x^{2} \ + y^{2} \ + z^{2}$$ =31 ?
Given : $$x+y+z=9$$ ---------(i)
and $$x^2+y^2+z^2=31$$ -----------(ii)
Squaring equation (i), we get :
=> $$(x+y+z)^2=(9)^2$$
=> $$(x^2+y^2+z^2)+2(xy+yz+zx)=81$$
=> $$31+2(xy+yz+zx)=81$$
=> $$2(xy+yz+zx)=81-31=50$$
=> $$xy+yz+zx=\frac{50}{2}=25$$ -----------(iii)
To find : $$x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-zx)$$
= $$(9)\times(31-25)$$
= $$9\times6=54$$
=> Ans - (C)
Create a FREE account and get: