ABCD is a square. Draw an equilateral triangle PBC on side BC considering BC is a base and an equilateral triangle QAC on digonal AC considering AC is a base. Find the value of $$\ \frac{Area \ of \ \triangle PBC}{Area \ of \ \triangle QAC}$$
Let side of the square be $$x$$ cm
=> Side of equilateral $$\triangle$$ PBC = $$x$$ cm
In right $$\triangle$$ ABC,
=> $$(AC)^2=(AB)^2+(BC)^2$$
=> $$(AC)^2=(x)^2+(x)^2=2x^2$$
=> $$AC=\sqrt2x$$
$$\therefore$$Â $$\ \frac{ar(\triangle PBC)}{ar(\triangle QAC)}$$
= $$[\frac{\sqrt3}{4}\times (x)^2]\div[\frac{\sqrt3}{4}\times (\sqrt2x)^2]$$
= $$\frac{x^2}{2x^2}=\frac{1}{2}$$
=> Ans - (A)
Create a FREE account and get: