The circumference of a circle exceeds its diameter by 60 cm. The area of the circle is: Take($$\pi=\frac{22}{7}$$)
Let radius = rÂ
diameter = 2rÂ
According to question $$2\pi r = 2r +60$$
$$\Rightarrow 2\pi r - 2r = 60 $$
$$\Rightarrow 2r(\pi - 1) = 60 $$Â
$$\Rightarrow 2r (\dfrac{22}{7} -1)Â = 60 $$
$$\Rightarrow 2r \times \dfrac{15}{7} = 60$$
$$\Rightarrow r = \dfrac {60\times 7} {30}$$
$$\Rightarrow r = 14 cm$$Â
Area = $$\pi r^2 $$Â
$$\Rightarrow \dfrac {22}{7} \times 14 \times 14 $$
$$\Rightarrow 22\times 28 $$
$$\Rightarrow 616 cm^2$$ AnsÂ
Create a FREE account and get: