In $$\triangle$$ABC, the line parallel to $$BC$$ intersects $$AB$$ and $$AC$$ at $$P$$ and $$Q$$ respectively. If $$AB:AP=5:3$$, then $$AQ:QC$$ is:
Given : PQ $$\parallel$$ BC and $$AB:AP=5:3$$
To find : $$AQ:QC$$
Solution : In $$\triangle$$ APQ and $$\triangle$$ ABC,
$$\angle$$ APQ =Â $$\angle$$Â ABCÂ Â (Corresponding angles)
$$\angle$$Â AQP =Â $$\angle$$Â ACBÂ Â (Corresponding angles)
=>Â $$\triangle$$ APQ $$\sim$$ $$\triangle$$ ABC (By AA criterion)
=> $$\frac{AQ}{QC}=\frac{AP}{PB}$$
=>Â $$\frac{AQ}{QC}=\frac{AP}{AB-AP}$$
$$\frac{AQ}{QC}=\frac{3}{2}$$
=> Ans - (A)
Create a FREE account and get: