Question 140

ABCD is a cyclic quadrilateral. The side AB is extended to E in such a way that BE = BC. If ∠ADC = 70°, ∠BAD = 95°, then ∠DCE is equal to

Solution


$$\because$$ ABCD is a cyclic quadrilateral,
$$\angle{ADC}+\angle{ABC}=180$$
$$\angle{ABC}=110$$
Similarly $$\angle{BCD}=85$$
$$\angle{EBC}=180-\angle{ABC}$$
$$\angle{EBC}=70$$
$$\because$$ BC=BE,
$$\angle{BEC}=\angle{BCE}=x$$
In $$\triangle{BEC}$$,
$$\angle{BEC}+ \angle{CBE}+ \angle{ECB}=180$$
$$70+x+x=180$$
$$x=55$$
$$\angle{DCE}=\angle{ECB}+\angle{DCB}$$
$$\angle{DCE}=55+85$$
$$\angle{DCE}=140$$
Hence, Option A is correct.



Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App