Which of the following statements(S) is/are TRUE ?
I. $$\sqrt[3]{512}\times\sqrt{256}>\sqrt[3]{343}\times\sqrt{289}$$
II. $$\sqrt{121}+\sqrt[3]{1331}>\sqrt[3]{125}\times\sqrt{25}$$
IÂ :Â $$\sqrt[3]{512}\times\sqrt{256}>\sqrt[3]{343}\times\sqrt{289}$$
L.H.S. = $$8\times16=128$$
R.H.S. = $$7\times17=119$$
Thus, $$128>119$$, which is correct.
IIÂ : $$\sqrt{121}+\sqrt[3]{1331}>\sqrt[3]{125}\times\sqrt{25}$$
L.H.S. = $$11+11=22$$
R.H.S. = $$5\times5=25$$
Thus, $$22<25$$
$$\therefore$$ Only I is correct.
=> Ans - (A)
Create a FREE account and get: