What is the simplified value of $$\frac{\sqrt{5}+\sqrt{4}}{\sqrt{5}-\sqrt{4}}+\frac{\sqrt{5}-\sqrt{4}}{\sqrt{5}+\sqrt{4}}$$ ?
Expression : $$\frac{\sqrt{5}+\sqrt{4}}{\sqrt{5}-\sqrt{4}}+\frac{\sqrt{5}-\sqrt{4}}{\sqrt{5}+\sqrt{4}}$$
= $$\frac{(\sqrt5+\sqrt4)^2+(\sqrt5-\sqrt4)^2}{(\sqrt5-\sqrt4)(\sqrt5+\sqrt4)}$$
= $$\frac{(5+4+2\sqrt{20})+(5+4-2\sqrt{20})}{5-4}$$
= $$\frac{(9+9)}{1}=18$$
=> Ans - (C)
Create a FREE account and get: