Question 139

The numerical value of $$\frac{1}{1+cot^2 θ} + \frac{3}{1+tan^2 θ} + 2sin^2 θ $$ is

Solution

Expression : $$\frac{1}{1+cot^2 θ} + \frac{3}{1+tan^2 θ} + 2sin^2 θ $$

= $$\frac{1}{1 + \frac{cos^2 \theta}{sin^2 \theta}} + \frac{3}{1 + \frac{sin^2 \theta}{cos^2 \theta}} + 2 sin^2 \theta$$

= $$\frac{sin^2 \theta}{cos^2 \theta + sin^2 \theta} + \frac{3 cos^2 \theta}{cos^2 \theta + sin^2 \theta} + 2 sin^2 \theta$$

= $$sin^2 \theta + 3 cos^2 \theta + 2 sin^2 \theta$$

= $$3 (cos^2 \theta + sin^2 \theta) = 3$$


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App