Sign in
Please select an account to continue using cracku.in
↓ →
In ΔABC, ∠C = 54°, the perpendicular bisector of AB at D meets BC at E. If ∠EAC = 42°, then what is the value (in degrees) of ∠ABC?
Given : ED is the perpendicular bisectors of AB, $$\angle C=54^\circ$$ and $$\angle EAC=y=42^\circ$$
To find : $$\angle B=x=?$$
Solution : In $$\triangle$$ EAC, using exterior angle property,
=> $$\angle$$ AEB = $$\angle$$ C + $$y$$
=> $$\angle$$ AEB = $$54^\circ+42^\circ=96^\circ$$
Thus, in $$\triangle$$ AEB, => $$x+z=180^\circ-96^\circ=84^\circ$$ ------------(i)
Also, in $$\triangle$$ EAD and $$\triangle$$ BDE
AD = DB (DE bisects AB)
$$\angle$$ EAD = $$\angle$$ EDB = $$90^\circ$$
DE = DE (Common)
Thus, $$\triangle$$ EAD $$\cong$$ $$\triangle$$ BDE (By SAS criterion)
=> $$x=z$$ (By CPCT)
Substituting above value in equation (i), we get :
=> $$x+x=2x=84^\circ$$
=> $$x=\frac{84}{2}=42^\circ$$
=> Ans - (B)
Create a FREE account and get: