If length of each side of a rhombus ABCD is 16 cm and ∠ABC = 120$$^\circ$$, then what is the length (in cm) of BD?
Given : BC = 16 cm and $$\angle$$ ABC = $$120^\circ$$
Diagonals of a rhombus bisect each others at right angle.
Thus, $$\angle$$ OBC = $$\frac{1}{2}\times120^\circ=60^\circ$$
In $$\triangle$$ OBC,
=> $$cos(\angle OBC)=\frac{OB}{BC}$$
=> $$cos(60^\circ)=\frac{OB}{16}$$
=> $$\frac{1}{2}=\frac{OB}{16}$$
=> $$OB=\frac{16}{2}=8$$ cm
$$\therefore$$ BD = $$2\times8=16$$ cm
=> Ans - (C)
Create a FREE account and get: