In ΔPQR, ∠PQR = 90°, PQ = 5 cm and QR = 12. What is the radius (in cm) of the circum-circle of ΔPQR?
Given : In ΔPQR, ∠PQR = 90°, PQ = 5 cm and QR = 12 cm
To find : OR = ?
Solution : In $$\triangle$$ PQR,
=> $$(PR)^2=(PQ)^2+(QR)^2$$
=> $$(PR)^2=(5)^2+(12)^2$$
=> $$(PR)^2=25+144=169$$
=> $$PR=\sqrt{169}=13$$ cm
Also, in a right angled triangle, circumradius is half the hypotenuse of the triangle.
$$\therefore$$ OR = $$r=\frac{13}{2}=6.5$$ cm
=> Ans - (A)
Create a FREE account and get: