In the given figure, O is the center of the circle, $$\ \angle$$PQR = 100$$^\circ\ $$and $$\angle$$STR = 105$$^\circ$$. What is the value (in degrees) of $$\ \angle$$OSP?
Given : $$\ \angle$$PQR = 100$$^\circ\ $$and $$\angle$$STR = 105$$^\circ$$
To find : $$\ \angle$$OSP = ?
Solution : Quadrilateral PQRS is cyclic quadrilateral, hence opposite angles are supplementary.
=> $$\angle$$ PQR +Â $$\angle$$Â PSR = $$180^\circ$$
=>Â $$\angle$$Â PSR = $$180^\circ-100^\circ=80^\circ$$ --------------(i)
Also, angle at the centre is double the angle at any point on the circumference of the circle in the same segment.
=> reflex ($$\angle$$ SOR) = $$2$$ $$\times$$ $$\angle$$ STR
=> reflex ($$\angle$$ SOR) = $$2\times105^\circ=210^\circ$$
Thus, $$\angle$$ SOR = $$360^\circ-210^\circ=150^\circ$$
Now, in $$\triangle$$ SOR, OS = OR = radius
=>Â $$\angle$$Â OSR =Â $$\angle$$Â ORS = $$15^\circ$$ ----------(ii)
Subtracting equation (ii) from (i), we get :
$$\therefore$$Â $$\angle$$Â OSP = $$80^\circ-15^\circ=65^\circ$$
=> Ans - (D)
Create a FREE account and get: