In two days A, B and C together can finish $$\frac{1}{2}$$ of a work and in another 2 days B and C together can finish $$\frac{3}{10}$$ part of the work. Then A alone can complete the whole work in
Let the total work to be done = L.C.M. (2,10) = 10 units
Let efficiencies of A, B and C be $$a,b$$ and $$c$$ units/day respectively.
A, B and C together can finish $$\frac{1}{2}$$ of a work (i.e. 5 units) in 2 days, => $$(a+b+c)=\frac{5}{2}=2.5$$ units/day -------------(i)
Similarly, $$(b+c)=\frac{3}{2}=1.5$$ units/day ---------(ii)
Subtracting equation (ii) from (i), we get :
=> $$a=2.5-1.5=1$$ unit/day
$$\therefore$$ Time taken by A alone to complete the work = $$\frac{10}{1}=10$$ days
=> Ans - (D)
Create a FREE account and get: