If $$x^{2}-9x-1=0$$, then what is the value of $$Â (x^{2}-\frac{1}{x^{2}}+5x-\frac{5}{x})$$ ?
Given : $$x^{2}-9x-1=0$$
=> $$x^2-1=9x$$
Dividing both sides by $$'x'$$,
=> $$x-\frac{1}{x}=9$$ --------------(i)
Squaring both sides, we get :
=> $$(x-\frac{1}{x})^2=(9)^2$$
=> $$x^2-\frac{1}{x^2}-2(x)(\frac{1}{x})=81$$
=> $$x^2-\frac{1}{x^2}=81+2=83$$ -----------(ii)
$$\therefore$$Â $$Â (x^{2}-\frac{1}{x^{2}}+5x-\frac{5}{x})$$
=Â $$Â (x^{2}-\frac{1}{x^{2}})+5(x-\frac{1}{x})$$
Substituting values from equation (i) and (ii),
=Â $$83+5(9)=128$$
=> Ans - (B)
Create a FREE account and get: