Sign in
Please select an account to continue using cracku.in
↓ →
If $$x^{3}+\frac{3}{x}=4(a^{3}+b^{3})$$ and $$3x+\frac{1}{x^3}=4(a^{3}-b^{3})$$, then $$a^{2}-b^{2}$$ is equal to
Given : $$x^{3}+\frac{3}{x}=4(a^{3}+b^{3})$$ and $$3x+\frac{1}{x^3}=4(a^{3}-b^{3})$$
Adding the above equations, we get :
=> $$x^3 + \frac{1}{x^3} + 3(x + \frac{1}{x}) = 8a^3$$
=> $$(x + \frac{1}{x})^3 = (2a)^3$$
=> $$x + \frac{1}{x} = 2a$$ ------------------Eqn(1)
Similarly, subtracting the above equations, we get :
=> $$x - \frac{1}{x} = 2b$$ ---------------Eqn(2)
Now, adding eqns(1) & (2)
=> $$2(a + b) = 2x$$
=> $$(a + b) = x$$
SUbtracting eqn(2) from (1)
=> $$2(a - b) = \frac{2}{x}$$
=> $$(a - b) = \frac{1}{x}$$
To find : $$a^{2}-b^{2}$$
= $$(a + b) (a - b)$$
= $$(x) (\frac{1}{x}) = 1$$
Create a FREE account and get: