If $$\ x^{2}\ - 3x + 1 = 0$$, then what is the value of $$\ x^{4}\ $$+Â $$\ \frac{1}{x^{4}}$$?
Given : $$x^2-3x+1=0$$
Dividing both sides by $$'x'$$
=> $$x+\frac{1}{x}=3$$
Squaring both sides, we get :
=> $$x^2+\frac{1}{x^2}+2(x)(\frac{1}{x})=9$$
=> $$x^2+\frac{1}{x^2}=9-2=7$$
Again squaring both sides,
=> $$x^4+\frac{1}{x^4}+2(x^2)(\frac{1}{x^2})=49$$
=> $$x^4+\frac{1}{x^4}=49-2=47$$
=> Ans - (C)
Create a FREE account and get: