If (a - b) = 3, (b - c) = 5 and (c - a) = 1, then the value of $$\frac{a^3 + b^3 + c^3 - 3abc}{a + b + c}$$ is
it is given that (a - b) = 3, (b - c) = 5 and (c - a) = 1Â
we need to find the value of $$\frac{a^3 + b^3 + c^3 - 3abc}{a + b + c}$$Â
as we know that $${a^3 + b^3 + c^3}$$ = $$(a+b+c)({a^2 + b^2 + c^2 - ab - bc - ac})$$ ........(5)
and $${(a-b)^2 = a^2 + b^2 - 2ab}$$.......(1)
$${(b-c)^2 = b^2 + c^2 - 2cb}$$...........(2)
$${(c-a)^2 = a^2 + c^2 - 2ac}$$..........(3)
adding 1 , 2 and 3Â
17.5 =Â $$({a^2 + b^2 + c^2 - ab - bc - ac}$$ .....(4)
Now using 4 and 5 statementÂ
$$\frac{a^3 + b^3 + c^3 - 3abc}{a + b + c}$$Â = 17.5
Create a FREE account and get: