Question 133

$$\lim_{x \rightarrow 5} \frac{x^{2} - 3x - 10}{x^{2} - 7x + 10} =$$

Solution

given that 

$$\lim_{x \rightarrow 5} \frac{x^{2} - 3x - 10}{x^{2} - 7x + 10} $$

we can write this as 

$$\lim_{x \rightarrow 5} \frac{x^{2} - 5x + 2x - 10}{x^{2} - 5x -2x + 10} =$$  $$\lim_{x \rightarrow 5} \frac{x(x-5) + 2(x - 5)}{x(x-5) - 2(x- 5)} =$$

$$\lim_{x \rightarrow 5} \frac{(x - 5)(x +2)}{(x - 5)(x -2)} =$$  $$\lim_{x \rightarrow 5} \frac{(x + 2)}{(x - 2)} =$$

put the value of x we get 

7\3 Answer 


Create a FREE account and get:

  • Download Maths Shortcuts PDF
  • Get 300+ previous papers with solutions PDF
  • 500+ Online Tests for Free

cracku

Boost your Prep!

Download App