Question 134

If $$x = t - \frac{1}{t}, y = t + \frac{1}{t}$$ where t is a parameter then $$\frac{dy}{dx} =$$

Solution

given that 

$$x = t - \frac{1}{t}, y = t + \frac{1}{t}$$ 

then

$$\frac{dy}{dx}$$ = $$\frac{\frac{\text{d}y}{\text{d}t}}{\frac{\text{d}x}{\text{d}t}}$$  

then $$\frac{\text{d}y}{\text{d}t}$$ = 1\y and $${\text{d}x}{\text{d}t}$$ = 1\x  

$$\frac{dy}{dx}$$ = 1\y\1\x = x\y Answer 


Create a FREE account and get:

  • Download Maths Shortcuts PDF
  • Get 300+ previous papers with solutions PDF
  • 500+ Online Tests for Free

cracku

Boost your Prep!

Download App