If $$x = t - \frac{1}{t}, y = t + \frac{1}{t}$$ where t is a parameter then $$\frac{dy}{dx} =$$
given that
$$x = t - \frac{1}{t}, y = t + \frac{1}{t}$$
then
$$\frac{dy}{dx}$$ = $$\frac{\frac{\text{d}y}{\text{d}t}}{\frac{\text{d}x}{\text{d}t}}$$
then $$\frac{\text{d}y}{\text{d}t}$$ = 1\y and $${\text{d}x}{\text{d}t}$$ = 1\x
$$\frac{dy}{dx}$$ = 1\y\1\x = x\y Answer
Create a FREE account and get: