If$$\frac{1}{x+2}=\frac{3}{y+3}=\frac{1331}{z+1331}=\frac{1}{3}$$, then what is the value of $$\frac{x}{x+1}+\frac{4}{y+2}+\frac{z}{z+2662}?$$
Given $$\frac{1}{x+2}=\frac{1}{3}$$
We get x = 1 .....(1)
$$\frac{3}{y+3}=\frac{1}{3}$$
we get y = 6 .....(2)
$$\frac{1331}{z+1331}=\frac{1}{3}$$
we get z = 2662 ....(3)
We need to find $$\frac{x}{x+1}+\frac{3}{y+3}+\frac{z}{z+2662}$$
Substitute equations (1), (2) and (3) in the above equation
= $$\frac{1}{1+1}+\frac{3}{6+3}+\frac{2662}{2662+2662}$$
= $$\frac{1}{2}+\frac{3}{9}+\frac{1}{2}$$
= $$\frac{3}{2}$$
Hence, option C is the correct answer.
Create a FREE account and get: