Question 132

If x = 3-2√2, then √x + (1/√x) is equal to ____.

Solution

Given, $$x = 3-2\sqrt{2}$$......(1)

$$\sqrt{x} = \sqrt{3-2\sqrt{2}}$$  (or)  $$\sqrt{x} = \sqrt{(\sqrt{2})^{2} + (\sqrt{1})^{2} -2\sqrt{2}}$$

$$\sqrt{x} = \sqrt{(\sqrt{2}) - \sqrt{1})^{2}}$$  (or)  $$\sqrt{x} = {\sqrt{2} - 1}$$........(2)

Now, $$\sqrt{x} + \frac{1}{\sqrt{x}}$$ = $$\frac{x + 1}{\sqrt{x}}$$

Substitute equation (1) and (2) in the above equation 

$$\frac{3 - 2\sqrt{2} + 1}{\sqrt{2} - 1}$$ (or) $$\frac{4 - 2\sqrt{2}}{\sqrt{2} - 1}$$

Multiply and divide by $$\sqrt{2} + 1$$

$$\Rightarrow \frac{4 - 2\sqrt{2}}{\sqrt{2} - 1}$$ x $$\frac{\sqrt{2}+1}{\sqrt{2}+1}$$ = $$(4 - 2\sqrt{2})(\sqrt{2}+1)$$

$$\Rightarrow$$ $$(4\sqrt{2} + 4 - 4 -2\sqrt{2})$$ = $$2\sqrt{2}$$

Hence, option D is the correct answer.

Video Solution

video

Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App