Given, $$x = 3-2\sqrt{2}$$......(1)
$$\sqrt{x} = \sqrt{3-2\sqrt{2}}$$ (or) $$\sqrt{x} = \sqrt{(\sqrt{2})^{2} + (\sqrt{1})^{2} -2\sqrt{2}}$$
$$\sqrt{x} = \sqrt{(\sqrt{2}) - \sqrt{1})^{2}}$$ (or) $$\sqrt{x} = {\sqrt{2} - 1}$$........(2)
Now, $$\sqrt{x} + \frac{1}{\sqrt{x}}$$ = $$\frac{x + 1}{\sqrt{x}}$$
Substitute equation (1) and (2) in the above equation
$$\frac{3 - 2\sqrt{2} + 1}{\sqrt{2} - 1}$$ (or) $$\frac{4 - 2\sqrt{2}}{\sqrt{2} - 1}$$
Multiply and divide by $$\sqrt{2} + 1$$
$$\Rightarrow \frac{4 - 2\sqrt{2}}{\sqrt{2} - 1}$$ x $$\frac{\sqrt{2}+1}{\sqrt{2}+1}$$ = $$(4 - 2\sqrt{2})(\sqrt{2}+1)$$
$$\Rightarrow$$ $$(4\sqrt{2} + 4 - 4 -2\sqrt{2})$$ = $$2\sqrt{2}$$
Hence, option D is the correct answer.
Create a FREE account and get: