If $$\frac{x}{x^2-2x+1}=\frac{1}{3}$$ then the value of $$x^{3}+\frac{1}{x^3}$$ is :
$$x^{3}+\frac{1}{x^3}$$ = $$(x + \frac{1}{x})^3$$ - 3(x+ $$\frac{1}{x}$$) ....................(1)
Now,
$$\frac{x}{x^2-2x+1}=\frac{1}{3}$$
$$(x^2 -2x+1)=3x$$
$$(x^2-5x+1)=0$$
$$(x^2 + 1)$$ = 5x............(2)
using equation 1 and 2
$$(x + \frac{1}{x})^3$$ - 3(x+ $$\frac{1}{x}$$) = $$(\frac{x^2 + 1}{x})^3$$ - 3$$\frac{(x^2+1)}{x}$$ = 125 - 15 = 110
Create a FREE account and get: