If $$(\cos \theta + \sin \theta) : (\cos \theta - \sin \theta) = (\sqrt{3} + 1) : (\sqrt{3} - 1), 0^\circ < \theta < 90^\circ$$, then what is the value of $$\sec \theta$$?
Given that $$(\cos \theta + \sin \theta) : (\cos \theta - \sin \theta) = (\sqrt{3} + 1) : (\sqrt{3} - 1)$$
$$\Rightarrow \sqrt{3} \cos \theta - \cos \theta + \sqrt{3} \sin \theta - \sin \theta = \sqrt{3} \cos \theta + \cos \theta - \sqrt{3} \sin \theta - \sin \theta $$
$$\Rightarrow 2 \sqrt {3} \sin \theta = 2 \cos \theta $$
$$\Rightarrow \tan \theta = \dfrac {1}{\sqrt {3}} $$
$$\Rightarrow \theta = \tan^-1 \dfrac{1} {\sqrt {3}}$$
$$\Rightarrow \theta = 30^{\circ} $$
then $$ \sec \theta = \sec \30^\circ$$
               = $$ \dfrac{2} {\sqrt {3}} $$ AnsÂ
Create a FREE account and get: