Join AC
$$\because$$ $$\triangle$$APC and $$\triangle$$BPC lie on the same base CP and between same parallels AB & PC.
=> ar($$\triangle$$APC) = ar($$\triangle$$)BPC
Now, AD | | CQ and AD = CQ
=> ADQC is a parallelogram
Similarly, ar($$\triangle$$ADC) = ar($$\triangle$$ADQ)
Subtracting ar($$\triangle$$ADP) from both sides, we get :
=> ar($$\triangle$$APC) = ar($$\triangle$$DPQ)
$$\therefore$$ ar($$\triangle$$BPC) = ar($$\triangle$$DPQ)
Create a FREE account and get: