If θ is positive acute angle Find whether the equation 3 $$(\sec^{2}\theta-\tan^{2}\theta)=5$$ is true or not ?
Given that : 3 $$(\sec^{2}\theta-\tan^{2}\theta)=5$$
we know that 1 + $$tan^2 \theta = sec^2 \theta$$
using the above identity ,
L.H.S :: 3 $$(\sec^{2}\theta-\tan^{2}\theta)$$ = 3 $$(1 + tan^2 \theta - tan^2 \theta)$$ = 3
R.H.S :: 5
As , L.H.S =/= R.H.S the given equation is false
Create a FREE account and get: