Question 132

ABCD is a cyclic quadrilateral. The tangents to the circle at the points A and C on it, intersect at P. If $$\angle ABC = 98^\circ$$, then what is the measure of $$\angle APC$$?

Solution

ACD is a cyclic quadrilateral so,

$$\angle ABC + \angle ADC = 180\degree$$

$$\angle ADC = 180 - 98 = 82\degree$$

$$\angle AOC = 2 \times \angle ADC = 2 \times 82 = 164\degree$$

In quadrilateral AOCP-

$$\angle OAP + \angle APC + \angle PCO + \angle COA = 360\degree$$

$$\angle OAP = \angle PCO = 90\degree$$

($$\because$$ tangent angle)

$$\angle APC = 360 - 90 - 90 - 164 = 16\degree$$


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App