If P is the sum of odd terms and Q is the sum of even terms in the expansion of $$(x + y)^n$$ then $$P^{2} - Q^{2} =$$
we know that the expansion of sum of even term and sum of odd term are respective given below
$$(a + x)^{n}$$ = n$$C_{0}$$ $$a^{n}$$ + n$$C_{1}$$ $$a^{n-1}$$x + n$$C_{2}$$ $$a^{n-2}$$ $$x^{2}$$ + ............. + n$$C_{n}$$ $$x^{n}$$
$$(a - x)^{n}$$ = n$$C_{0}$$ $$a^{n}$$ - n$$C_{1}$$ $$a^{n-1}$$x + n$$C_{2}$$ $$a^{n-2}$$ $$x^{2}$$ - ............. + $$(-1)^n$$ n$$C_{n}$$ $$x^{n}$$
adding both we get
$$(a + x)^{n}$$ + $$(a - x)^{n}$$ = 2( n$$C_{0}$$ $$a^{n}$$ + n$$C_{2}$$ $$a^{n-2}$$ $$x^{2}$$ + ............. + n$$C_{n}$$ $$x^{n}$$)
hence
P = ($$(a + x)^{n}$$ + $$(a - x)^{n}$$)\2 equation 1
Q = ($$(a + x)^{n}$$ - $$(a - x)^{n}$$)\2 equation 2
there fore PQ we get
PQ = ($$(a + x)^{n}$$ + $$(a - x)^{n}$$)\2 $$\times$$ ($$(a + x)^{n}$$ - $$(a - x)^{n}$$)\2 = ($$(a + x)^{2n}$$ + $$(a - x)^{2n}$$)\4
or 4PQ = ($$(a + x)^{2n}$$ + $$(a - x)^{2n}$$)
$$P^{2}$$ - $$Q^{2}$$ = (($$(a + x)^{n}$$ + $$(a - x)^{n}$$)\2)^2 - (($$(a + x)^{n}$$ - $$(a - x)^{n}$$)\2)^2
$$P^{2}$$ - $$Q^{2}$$ = $$(a + x)^{n}$$ $$(a - x)^{n}$$
$$P^{2}$$ - $$Q^{2}$$ = ($$(a)^{2}$$ - $$(x)^{2}$$)^n Answer
Create a FREE account and get: