The term independent of x in the expansion of $$\left(3x^{3} - \frac{4}{x}\right)^8$$
letĀ $$(r+1)^{th}$$ term be the independent of x which is given by bio nominal theoremĀ
$$T_{r+1}$$ = 8$$c_{r}$$ $$\times$$Ā Ā $$a^{(8-r)}$$Ā $$\times$$ $$b^{r}$$Ā
here we have a = 3$$x^{3}$$ and b = -4\xĀ
put the value we getĀ
$$T_{r+1}$$ = 8$$c_{r}$$ $$\times$$Ā Ā (3$$x^{3}$$)^(8-r)Ā $$\times$$Ā (-4\x)^r
$$T_{r+1}$$ = 8$$c_{r}$$ $$\times$$ (3)^(8-r)($$x^{3}$$)^(8-r) $$\times$$ (-4)^r(x)^(-r)
$$T_{r+1}$$ = 8$$c_{r}$$ $$\times$$ (3)^(8-r)($$x^{24-3r}$$) $$\times$$ (-4)^r(x)^(-r)
sinceĀ the term is independent of x, we haveĀ
24 - 4r = 0
rĀ =Ā 6Ā
so the (r+1) = 7 term is independent so we can say thatĀ
$$T_{7}$$ =Ā 8$$c_{6}$$ $$\times$$Ā $$3^{3-1}$$Ā $$\times$$ (-4)^2(6-1)
$$T_{7}$$ = 8Ā $$\times$$ 7Ā $$\times$$Ā Ā $$3^{2}$$Ā $$\times$$Ā $$2^{11}$$
$$T_{7}$$ =Ā $$2^{14}$$Ā $$\times$$ 7 $$\times$$ $$3^{2}$$ Ā AnswerĀ
Create a FREE account and get: