If tan $$\begin{bmatrix}\frac{\pi}{2}-\frac{\alpha}{2}\end{bmatrix}=\sqrt{3}$$, then the value of cos $$\alpha$$ is
Given ,Â
tan $$\begin{bmatrix}\frac{\pi}{2}-\frac{\alpha}{2}\end{bmatrix}=\sqrt{3}$$
cot $$\begin{bmatrix}\frac{\alpha}{2}\end{bmatrix}=\sqrt{3}$$
$$\frac{\alpha}{2}$$ = $$30^{\circ}$$ ( $$\because\ cot\ 30^{\circ} = \sqrt{3}$$)
$$\alpha = 60^{\circ}$$
cos $$\alpha = cos\ 30^{\circ} = \frac{1}{2}$$
Hence, option B is the correct answer.
Create a FREE account and get: