If $$\frac{Sin\theta + Cos\theta}{Sin\theta - Cos\theta}= 3$$ then the value of $$Sin^4\theta$$ is:
Expression :Â $$\frac{Sin\theta + Cos\theta}{Sin\theta - Cos\theta}= 3$$
=> $$sin\theta+cos\theta=3sin\theta-3cos\theta$$
=> $$3sin\theta-sin\theta=cos\theta+3cos\theta$$
=> $$2sin\theta=4cos\theta$$
=> $$sin\theta=2\sqrt{1-sin^2\theta}$$
Squaring both sides, we get :
=> $$sin^2\theta=4(1-sin^2\theta)$$
=> $$sin^2\theta=4-4sin^2\theta$$
=> $$sin^2\theta+4sin^2\theta=4$$
=> $$5sin^2\theta=4$$
=> $$sin^2\theta=\frac{4}{5}$$
=> Ans - (A)
Create a FREE account and get: