A cirele is inscribed in a equilateral triangle of side 24 cm. What is the area (in cm$$^2$$) of a square inscribed in the circle?
According to a question, we draw the diagram is given belowÂ
Side of triangle = a
then $$( AB)^2 = (AD)^2 + (BD)^2 $$
$$\Rightarrow a^2 = (\frac{a}{2})^2 + (AD)^2 $$
$$\Rightarrow AD =\frac {\sqrt {3}} {2} a $$
Since AD is median . So centroid O divides each median in 2:1 ratio.
AO : OD = 2;1Â
AO = 2x , OD=x
AD = 3xÂ
$$ \frac{\sqrt {3}{2}}a = 3x $$
$$x= \frac{\sqrt {3} }{6}a$$Â
OD = $$ \sqrt {3} {6} a $$
PQ = $$2 \times radius of circle $$
   = $$2 \times \frac{\sqrt{3}} {6} a = \frac{\sqrt {3}} {3} a = \frac{a}{\sqrt{3}}$$
Now side of square = $$\frac {doagonal} {\sqrt{2}}$$
               = $$ \frac{a} {\sqrt{3} \sqrt{2}} = \frac {a} {\sqrt{6}}$$
Area of Square A = $$(side)^2Â Â $$
              = $$(\frac{a}{\sqrt{6}}) $$
             = $$ \frac{a^2}{6} $$
            = $$\frac{24 \times 24} {6}$$
           = 96 sqare unit Ans              Â
Create a FREE account and get: