Question 125

If $$(n^2-tn+\frac{1}{4})$$ be a perfect square then the value of t are:

Solution

If $$(n^2-tn+\frac{1}{4})$$ need to be a perfect square then ,

$$(n^2-tn+\frac{1}{4})$$ = $$(n^2 + \frac{1}{\pm2}^2 - 2\times\frac{1}{\pm2}n)$$

and hence we can conclude that "t" can take ±1 value


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App