If sin $$\theta=\frac{a}{b}$$, then the value of sec $$\theta-cos\ \theta$$ is (where $$0^\circ<\theta<90^\circ$$)
Given : sin $$\theta=\frac{a}{b}$$
Thus, using $$cos\theta=\sqrt{1-sin^2\theta}$$
=> $$cos\theta=\sqrt{1-(\frac{a}{b})^2}$$
=> $$cos\theta=\frac{\sqrt{b^2-a^2}}{b}$$
To find : sec $$\theta-cos\ \theta$$
= $$\frac{1}{cos\theta}-cos\theta$$
= $$\frac{1-cos^2\theta}{cos\theta}=\frac{sin^2\theta}{cos\theta}$$
= $$(\frac{a^2}{b^2})\div(\frac{\sqrt{b^2-a^2}}{b})$$
= $$(\frac{a^2}{b^2})\times(\frac{b}{\sqrt{b^2-a^2}})$$
= $$\frac{a^{2}}{b\sqrt{b^{2}-a^{2}}}$$
=> Ans - (D)
Create a FREE account and get: