If $$(x-3)^2 + (y - 5)^2 + (z-4)^2 = 0$$ then the value of $$\frac{x^2}{9} + \frac{y^2}{25} + \frac{z^2}{16}$$
Expression : $$(x-3)^2 + (y - 5)^2 + (z-4)^2 = 0$$
Since, all the terms are positive, the only way the sum can be '0' is, if each term is equal to 0.
=> $$(x - 3)^2 = 0$$
=> $$x = 3$$
Similarly, $$y = 5$$ & $$z = 4$$
To find : $$\frac{x^2}{9} + \frac{y^2}{25} + \frac{z^2}{16}$$
= $$\frac{3^2}{9} + \frac{5^2}{25} + \frac{4^2}{16}$$
= 1 + 1 + 1 = 3
Create a FREE account and get: