If $$\frac{a}{1-a} + \frac{b}{1-b} + \frac{c}{1-c} = 1$$ the the value of $$\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c}$$
Expression : $$\frac{a}{1-a} + \frac{b}{1-b} + \frac{c}{1-c} = 1$$
Let's put each term equal to each other
=> $$3\frac{a}{1 - a} = 1$$
=> $$3a = 1 - a$$
=> $$a = \frac{1}{4} = b = c$$
To find : $$\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c}$$
= $$\frac{1}{1 - \frac{1}{4}} + \frac{1}{1 - \frac{1}{4}} + \frac{1}{1 - \frac{1}{4}}$$
= $$3 \times \frac{4}{3} = 4$$
Create a FREE account and get: