If $$\frac{1}{x^{2}}+x^{2}$$ represents the radius of circle P and $$\ \frac{1}{x}+x=17$$, which of the following best approximates the circumference of circle P ?
Given : $$\ \frac{1}{x}+x=17$$
Squaring both sides,
=> $$(\frac{1}{x}+x)^2=(17)^2$$
=> $$x^2+\frac{1}{x^2}+2=289$$
=> $$x^2+\frac{1}{x^2}=289-2=287$$
=> Radius of circle = $$r=287$$
$$\therefore$$ Circumference = $$2\pi r$$
= $$2\times\pi\times287=574\pi$$
=> Ans - (C)
Create a FREE account and get: