Question 113

If $$a=\frac{2+\sqrt{3}}{2-\sqrt{3}}$$ and $$b=\frac{2-\sqrt{3}}{2+\sqrt{3}}$$, then the value of $$a^2+b^2+a \times b$$ is

Solution

$$a=\frac{2+\sqrt{3}}{2-\sqrt{3}}$$ on rationalising we will get a = $$(2 + \surd3)^2$$

$$b=\frac{2-\sqrt{3}}{2+\sqrt{3}}$$ on rationalizing we will get b = $$(2 - \surd3)^2$$

now putting values of a and b in , $$a^2+b^2+a \times b$$

$$a^2+b^2+a \times b$$ = 195


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App