The perimeter of a certain isosceles right triangle is 10 + $$10 \sqrt{2}\ $$ cm. What is the length of the hypotenuse of the triangle ?
ABC is an isosceles right angled triangle, where $$\angle$$ B = $$90^\circ$$
Let AB = BC = $$x$$
=> $$(AC)^2=x^2+x^2=2x^2$$
=> $$AC=\sqrt{2x^2}=\sqrt2x$$
Perimeter = $$x+x+\sqrt2x=10+10\sqrt2$$
=> $$2x+\sqrt2x=10+10\sqrt2$$
=> $$\sqrt2x(\sqrt2+1)=10(\sqrt2+1)$$
=> $$\sqrt2x=10$$
$$\therefore$$ Length of hypotenuse =Â 10 cm
=> Ans - (B)
Create a FREE account and get: