Question 111

If $$\sqrt{\frac{x-a}{x-b}}+\frac{a}{x}=\sqrt{\frac{x-b}{x-a}}+\frac{b}{x}$$ and $$b \neq a$$, then the value of $$x$$ is

Solution

We have :
$$\sqrt{\ \frac{x-a}{x-b}}+\frac{a}{x}=\sqrt{\ \frac{x-b}{x-a}}\ +\frac{b}{x}$$
we get $$\frac{a}{x}-\frac{b}{x}=\sqrt{\ \frac{x-b}{x-a}}\ -\sqrt{\ \frac{x-a}{x-b}}$$
we get 
$$\frac{a-b}{x}\ =\frac{x-b-x+a}{\sqrt{\ \left(x-a\right)\left(x-b\right)}}$$
so we get $$x=\sqrt{\ \left(x-a\right)\left(x-b\right)}$$
squaring we get 
$$x^2\ =\left(x-a\right)\left(x-b\right)$$
therefore x=$$\frac{ab}{a+b}$$


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App