Sign in
Please select an account to continue using cracku.in
↓ →
Value of $$2 (sin^6 θ + cos^6 θ) - 3 (sin^4 θ + cos^4 θ) + 1 $$is
Expression : $$2 (sin^6 θ + cos^6 θ) - 3 (sin^4 θ + cos^4 θ) + 1 $$
= $$2[(sin^2 \theta)^3 + (cos^2 \theta)^3] - 3 (sin^4 \theta + cos^4 \theta) + 1$$
Using, $$a^3 + b^3 = (a + b)(a^2 + b^2 - ab)$$
= $$2[(sin^2 \theta + cos^2 \theta) (sin^4 \theta + cos^4 \theta - sin^2 \theta . cos^2 \theta)] - 3 (sin^4 \theta + cos^4 \theta) + 1$$
= $$2sin^4 \theta + 2cos^4 \theta - 2sin^2 \theta cos^2 \theta - 3sin^4 \theta - 3cos^4 \theta + 1$$
= $$-(sin^4 \theta + cos^4 \theta + 2sin^2 \theta cos^2 \theta) + 1$$
= $$-(sin^2 \theta + cos^2 \theta)^2 + 1$$
= -1 + 1 = 0
Create a FREE account and get: