Sum of the squares of n consecutive numbers =
The sum of the perfect square between 120 and 300 =Â $$11^2+12^2+13^2+14^2+15^2+16^2+17^2$$
$$=\frac{17\left(17+1\right)\left(2\left(17+1\right)\right)}{6}-\frac{10\left(10+1\right)\left(2\left(10\right)+1\right)}{6}$$
$$=\frac{17\left(18\right)\left(35\right)}{6}-\frac{10\left(11\right)\left(21\right)}{6}$$
$$=51\times35-11\times35$$
$$=35\left(51-11\right)$$
$$=35\left(40\right)$$
$$=1400$$
Hence, the correct answer is Option A
Create a FREE account and get: