If $$x + y + z = 1, xy + yz + zx = -26$$ and $$x^3 + y^3 + z^3 = 151$$, then what will be the value of $$xyz$$?
Given : $$xy + yz + zx = -26$$ and $$x^3 + y^3 + z^3 = 151$$ ------------(i)
Also, $$x + y + z = 1$$
Squaring both sides, => $$(x+y+z)^2=1$$
=> $$(x^2+y^2+z^2)+2(xy+yz+zx)=1$$
=> $$(x^2+y^2+z^2)+2(-26)=1$$
=> $$(x^2+y^2+z^2)=1+52=53$$ --------------(ii)
We know that, $$x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-zx)$$
=> $$151-3xyz=(1)(53+26)$$
=> $$3xyz=151-79=72$$
=> $$xyz=\frac{72}{3}=24$$
=> Ans - (A)
Create a FREE account and get: