TF is a tower with F on the ground. The angle of elevation of T from A is x$$^\circ$$ such that tan x$$^\circ = \frac{2}{5}$$ and AF = 200 m. The angle of elevation of T from a nearer point B is y$$^\circ$$ with BF = 80 m. The value y$$^\circ$$ is;
From the figure,
In $$\triangle$$AFT,
tan x$$^\circ = \frac{2}{5}$$
$$=$$> Â $$\frac{TF}{AF}=\frac{2}{5}$$
$$=$$> Â $$\frac{TF}{200}=\frac{2}{5}$$
$$=$$>Â TF = 80 m
In $$\triangle$$BFT,
$$=$$> Â tan y$$^\circ$$ =Â $$\frac{TF}{BF}$$
$$=$$> Â tan y$$^\circ$$ =Â $$\frac{80}{80}$$
$$=$$> Â tan y$$^\circ$$ = 1
$$=$$>Â tan y$$^\circ$$ =Â tan 45$$^\circ$$
$$=$$> Â Â y$$^\circ$$ =Â 45$$^\circ$$
Hence, the correct answer is Option C
Create a FREE account and get: